organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*)-1-(4-Methylphenyl)-3-(2,3,5trichlorophenyl)prop-2-en-1-one

A. Thiruvalluvar,^a* M. Subramanyam,^a R. J. Butcher,^b Prakash Karegoudar^c and B. Shivarama Holla^d

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^cSeQuent Scientific Limited, 120 A&B Baikampady Industrial Area, New Mangalore, India, and ^dDepartment of Chemistry, Mangalore University, Karnataka 574 199, India Correspondence e-mail: athiru@vsnl.net

Received 17 November 2007; accepted 22 November 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.004 Å; R factor = 0.064; wR factor = 0.168; data-to-parameter ratio = 27.8.

In the title molecule, $C_{16}H_{11}Cl_3O$, the dihedral angle between the two benzene rings is 33.2 (1)°. The crystal packing is stabilized by $C-H\cdots O$ hydrogen bonds.

Related literature

For the uses of chalcones, see: John *et al.* (2007). For related crystal structures, see: Thiruvalluvar *et al.* (2007*a*,*b*).

Experimental

Crystal data

C ₁₆ H ₁₁ Cl ₃ O	
$M_r = 325.60$	
Orthorhombic, Pbca	
$a = 7.6432 (4) \text{ Å}_{-}$	
b = 10.5118 (4) Å	
c = 36.2356 (12) Å	

 $V = 2911.3 (2) Å^{3}$ Z = 8 Mo K\alpha radiation \mu = 0.62 mm^{-1} T = 200 (2) K 0.34 \times 0.27 \times 0.22 mm

Data collection

Oxford Diffraction Gemini	38087 measured reflections
diffractometer	5035 independent reflections
Absorption correction: multi-scan	2561 reflections with $I > 2\sigma(I)$
(CrysAlis RED; Oxford	$R_{\rm int} = 0.069$
Diffraction, 2007)	
$T_{\min} = 0.818, \ T_{\max} = 0.877$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	181 parameters
$wR(F^2) = 0.168$	H-atom parameters not refined
S = 1.03	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
5035 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13\cdots O^i$	0.95	2.43	3.372 (3)	169

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, z$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *PLATON* (Spek, 2003).

RJB acknowledges the NSF–MRI program for funding to purchase the X-ray CCD diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2037).

References

- Brandenburg, K. (1998). *DIAMOND*. Version 2.1. Crystal Impact GbR, Bonn, Germany.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- John, A., Mithun, A., Holla, B. S., Shashikala, H. D., Umesh, G. & Chandrasekharan, K. (2007). *Opt. Commun.* **296**, 235–241.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thiruvalluvar, A., Subramanyam, M., Butcher, R. J., Adhikari, A. V. & Karabasanagouda, T. (2007b). Acta Cryst. E63, 04716.
- Thiruvalluvar, A., Subramanyam, M., Butcher, R. J., Adhikari, A. V. & Wagle, S. (2007*a*). Acta Cryst. E**63**, 04536.

supplementary materials

Acta Cryst. (2008). E64, o60 [doi:10.1107/S1600536807062010]

(2E)-1-(4-Methylphenyl)-3-(2,3,5-trichlorophenyl)prop-2-en-1-one

A. Thiruvalluvar, M. Subramanyam, R. J. Butcher, P. Karegoudar and B. S. Holla

Comment

Chalcones and their derivatives show some interesting physical properties like liquid crystalline nature and nonlinear optical effect(John *et al.*, 2007). Thiruvalluvar *et al.* (2007*a*,b) have reported related crystal structures of chalcones. As a continuation of our work on chalcones, we report here the *x*-ray crystal structure of the title molecule, $C_{16}H_{11}Cl_{3}O$, Fig.1.

The dihedral angle between the methylphenyl ring and the trichlorophenyl ring is 33.2 (1)°. The crystal packing is stabilized by C13—H13····Oⁱ hydrogen bonds (Table 1 & Fig. 2; symmetry code as in Fig. 2)

Experimental

To the mixture of 2,3,5-trichlorobenzaldehyde (21 g, 0.1 mol) and 4-methylacetophenone (14.7 g, 0.11 mol) in methanol (100 ml), 20% of sodium hydroxide (8 g, 0.2 mol) was added at 288–293 K, after stirring for 8 h at 303 K. Solid obtained was filtered, washed with water and dried. The product was recrystallized using ethyl acetate. Yield was 27.6 g(85%).

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.96Å and U_{iso} = 1.2–1.5 times $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with the atomic numbering and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radius.

Fig. 2. The packing of the title compound, viewed down the *a* axis. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) -x + 1/2, y - 1/2, *z*.]

(2E)-1-(4-Methylphenyl)-3-(2,3,5-trichlorophenyl)prop-2-en-1-one

Crystal data

$C_{16}H_{11}Cl_3O$
$M_r = 325.60$
Orthorhombic, Pbca

 $D_x = 1.486 \text{ Mg m}^{-3}$ Melting point: 467(1) K Mo *K* α radiation

Hall symbol: -P 2ac 2ab
a = 7.6432 (4) Å
<i>b</i> = 10.5118 (4) Å
c = 36.2356 (12) Å
$V = 2911.3 (2) \text{ Å}^3$
Z = 8
$F_{000} = 1328$

Data collection

$\lambda = 0.71073 \text{ Å}$
Cell parameters from 8272 reflections
$\theta = 4.7 - 32.4^{\circ}$
$\mu = 0.62 \text{ mm}^{-1}$
T = 200 (2) K
Prism, colourless
$0.34 \times 0.27 \times 0.22 \text{ mm}$

Oxford Diffraction Gemini diffractometer	5035 independent reflections
Radiation source: fine-focus sealed tube	2561 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.069$
T = 200(2) K	$\theta_{\text{max}} = 32.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 4.7^{\circ}$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$h = -11 \rightarrow 10$
$T_{\min} = 0.818, \ T_{\max} = 0.877$	$k = -15 \rightarrow 15$
38087 measured reflections	$l = -54 \rightarrow 51$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.064$	H-atom parameters not refined
$wR(F^2) = 0.168$	$w = 1/[\sigma^2(F_o^2) + (0.0546P)^2 + 3.6539P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = <0.001$
5035 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
181 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods returned a structure invariant direct Extinction correction: none

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.04881 (12)	0.50228 (8)	0.19318 (2)	0.0482 (3)
Cl2	-0.10841 (14)	0.32270 (9)	0.25375 (2)	0.0598 (3)
C13	-0.06450 (13)	-0.07474 (8)	0.16142 (2)	0.0501 (3)
0	0.2908 (3)	0.52884 (19)	0.06638 (5)	0.0419 (7)
C1	0.1438 (4)	0.3651 (3)	-0.05988 (7)	0.0315 (8)
C2	0.2542 (4)	0.4610 (3)	-0.04685 (8)	0.0358 (9)
C3	0.2707 (4)	0.4818 (3)	-0.00924 (7)	0.0357 (9)
C4	0.1813 (3)	0.4086 (2)	0.01640 (7)	0.0265 (7)
C5	0.0720 (4)	0.3127 (3)	0.00328 (7)	0.0320 (8)
C6	0.0552 (4)	0.2926 (3)	-0.03434 (7)	0.0341 (8)
C7	0.1220 (4)	0.3410 (3)	-0.10050 (8)	0.0448 (10)
C8	0.0644 (3)	0.2917 (3)	0.14942 (7)	0.0294 (8)
C9	0.0205 (4)	0.3419 (3)	0.18411 (7)	0.0326 (8)
C10	-0.0503 (4)	0.2623 (3)	0.21107 (7)	0.0380 (9)
C11	-0.0769 (4)	0.1338 (3)	0.20478 (8)	0.0392 (9)
C12	-0.0301 (4)	0.0868 (3)	0.17038 (7)	0.0366 (9)
C13	0.0398 (4)	0.1617 (3)	0.14318 (7)	0.0328 (8)
C14	0.2066 (4)	0.4357 (3)	0.05641 (7)	0.0299 (8)
C15	0.1296 (4)	0.3471 (3)	0.08389 (7)	0.0350 (9)
C16	0.1330 (4)	0.3734 (3)	0.11973 (7)	0.0321 (8)
H2	0.31806	0.51195	-0.06379	0.0429*
Н3	0.34525	0.54801	-0.00081	0.0428*
Н5	0.00885	0.26093	0.02016	0.0385*
Н6	-0.01996	0.22678	-0.04280	0.0409*
H7A	0.19620	0.26939	-0.10791	0.0671*
H7B	0.15616	0.41717	-0.11433	0.0671*
H7C	-0.00066	0.32072	-0.10576	0.0671*
H11	-0.12525	0.08011	0.22323	0.0470*
H13	0.07160	0.12530	0.12013	0.0393*
H15	0.07694	0.27026	0.07569	0.0420*
H16	0.18438	0.45194	0.12686	0.0385*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0641 (6)	0.0425 (4)	0.0379 (4)	0.0013 (4)	0.0016 (4)	-0.0104 (3)
Cl2	0.0763 (7)	0.0702 (6)	0.0328 (4)	-0.0083 (5)	0.0172 (4)	-0.0141 (4)
C13	0.0708 (6)	0.0372 (4)	0.0422 (4)	-0.0073 (4)	0.0041 (4)	0.0009 (3)
0	0.0503 (14)	0.0385 (12)	0.0370 (10)	-0.0092 (10)	-0.0045 (10)	-0.0030 (9)
C1	0.0329 (15)	0.0324 (14)	0.0292 (13)	0.0067 (12)	0.0021 (11)	-0.0019 (11)
C2	0.0360 (16)	0.0353 (15)	0.0361 (14)	-0.0053 (13)	0.0051 (13)	0.0031 (12)
C3	0.0342 (16)	0.0341 (15)	0.0387 (15)	-0.0083 (13)	-0.0009 (13)	0.0007 (12)
C4	0.0259 (13)	0.0239 (13)	0.0296 (12)	0.0032 (11)	-0.0010 (11)	0.0021 (10)
C5	0.0340 (15)	0.0293 (14)	0.0328 (13)	-0.0049 (12)	0.0030 (12)	0.0046 (11)

supplementary materials

C6	0.0349 (16)	0.0326 (14)	0.0347 (14)	-0.0054 (13)	-0.0023 (12)	-0.0026 (11)
C7	0.0472 (19)	0.057 (2)	0.0302 (14)	0.0024 (17)	0.0017 (14)	-0.0040 (14)
C8	0.0274 (14)	0.0352 (14)	0.0255 (12)	0.0041 (12)	-0.0020 (11)	-0.0007 (10)
C9	0.0338 (15)	0.0332 (14)	0.0309 (13)	0.0025 (12)	-0.0027 (12)	-0.0054 (11)
C10	0.0411 (17)	0.0489 (18)	0.0241 (12)	-0.0014 (15)	0.0030 (12)	-0.0066 (12)
C11	0.0407 (17)	0.0488 (18)	0.0280 (14)	-0.0054 (15)	0.0003 (12)	0.0007 (12)
C12	0.0435 (18)	0.0376 (16)	0.0286 (13)	-0.0007 (14)	-0.0025 (12)	-0.0012 (11)
C13	0.0360 (15)	0.0373 (15)	0.0250 (12)	0.0038 (13)	-0.0008 (12)	-0.0007 (11)
C14	0.0287 (14)	0.0282 (14)	0.0329 (13)	0.0030 (12)	-0.0029 (11)	-0.0006 (11)
C15	0.0437 (17)	0.0291 (14)	0.0323 (14)	-0.0019 (13)	-0.0021 (13)	-0.0014 (11)
C16	0.0333 (15)	0.0316 (14)	0.0314 (14)	0.0022 (12)	-0.0006 (12)	-0.0022 (11)

Geometric parameters (Å, °)

Cl1—C9	1.731 (3)	C10-C11	1.385 (4)
Cl2—C10	1.730 (3)	C11—C12	1.388 (4)
Cl3—C12	1.749 (3)	C12—C13	1.370 (4)
O—C14	1.226 (4)	C14—C15	1.485 (4)
C1—C2	1.397 (4)	C15—C16	1.328 (4)
C1—C6	1.377 (4)	С2—Н2	0.9500
C1—C7	1.503 (4)	С3—Н3	0.9500
C2—C3	1.386 (4)	С5—Н5	0.9500
C3—C4	1.386 (4)	С6—Н6	0.9500
C4—C5	1.393 (4)	С7—Н7А	0.9800
C4—C14	1.490 (4)	С7—Н7В	0.9800
C5—C6	1.385 (4)	С7—Н7С	0.9800
C8—C9	1.404 (4)	C11—H11	0.9500
C8—C13	1.398 (4)	С13—Н13	0.9500
C8—C16	1.473 (4)	С15—Н15	0.9500
C9—C10	1.396 (4)	С16—Н16	0.9500
Cl1···Cl2	3.1344 (12)	C6····H3 ^x	2.9400
Cl2···C9 ⁱ	3.627 (3)	C13···H7A ^{xi}	3.0100
Cl2…C9 ⁱ Cl2…Cl1	3.627 (3) 3.1344 (12)	C13···H7A ^{xi} C13···H15	3.0100 2.7100
Cl2…C9 ⁱ Cl2…Cl1 Cl2…Cl3 ⁱⁱ	3.627 (3) 3.1344 (12) 3.5154 (11)	C13…H7A ^{xi} C13…H15 C14…H6 ^{viii}	3.0100 2.7100 2.7400
Cl2…C9 ⁱ Cl2…Cl1 Cl2…Cl3 ⁱⁱ Cl3…Cl2 ⁱⁱⁱ	3.627 (3) 3.1344 (12) 3.5154 (11) 3.5154 (11)	C13…H7A ^{xi} C13…H15 C14…H6 ^{viii} C15…H5	3.0100 2.7100 2.7400 2.6500
Cl2…C9 ⁱ Cl2…Cl1 Cl2…Cl3 ⁱⁱ Cl3…Cl2 ⁱⁱⁱ Cl3…C7 ^{iv}	3.627 (3) 3.1344 (12) 3.5154 (11) 3.5154 (11) 3.592 (3)	C13…H7A ^{xi} C13…H15 C14…H6 ^{viii} C15…H5 C15…H13	3.0100 2.7100 2.7400 2.6500 2.7100
Cl2…C9 ⁱ Cl2…Cl1 Cl2…Cl3 ⁱⁱ Cl3…Cl2 ⁱⁱⁱ Cl3…C7 ^{iv} Cl1…H16	3.627 (3) 3.1344 (12) 3.5154 (11) 3.5154 (11) 3.592 (3) 2.6700	C13…H7A ^{xi} C13…H15 C14…H6 ^{viii} C15…H5 C15…H13 H2…H7B	3.0100 2.7100 2.7400 2.6500 2.7100 2.4200
Cl2…C9 ⁱ Cl2…Cl1 Cl2…Cl3 ⁱⁱ Cl3…Cl2 ⁱⁱⁱ Cl3…C7 ^{iv} Cl1…H16 Cl3…H7A ^{iv}	3.627 (3) 3.1344 (12) 3.5154 (11) 3.5154 (11) 3.592 (3) 2.6700 2.9900	C13…H7A ^{xi} C13…H15 C14…H6 ^{viii} C15…H5 C15…H13 H2…H7B H3…O	3.0100 2.7100 2.7400 2.6500 2.7100 2.4200 2.4800
$\begin{array}{c} Cl2 \cdots C9^{i} \\ Cl2 \cdots Cl1 \\ Cl2 \cdots Cl3^{ii} \\ Cl3 \cdots Cl2^{iii} \\ Cl3 \cdots C7^{iv} \\ Cl1 \cdots H16 \\ Cl3 \cdots H7A^{iv} \\ O \cdots Cl3^{v} \end{array}$	3.627 (3) 3.1344 (12) 3.5154 (11) 3.5154 (11) 3.592 (3) 2.6700 2.9900 3.372 (3)	C13···H7A ^{xi} C13···H15 C14···H6 ^{viii} C15···H5 C15···H13 H2···H7B H3···O H3···C3 ^{vii}	3.0100 2.7100 2.7400 2.6500 2.7100 2.4200 2.4800 2.9700
$\begin{array}{c} C12 \cdots C9^{i} \\ C12 \cdots C11 \\ C12 \cdots C13^{ii} \\ C13 \cdots C12^{iii} \\ C13 \cdots C7^{iv} \\ C11 \cdots H16 \\ C13 \cdots H7A^{iv} \\ O \cdots C13^{v} \\ O \cdots H3 \end{array}$	3.627 (3) 3.1344 (12) 3.5154 (11) 3.5154 (11) 3.592 (3) 2.6700 2.9900 3.372 (3) 2.4800	C13···H7A ^{xi} C13···H15 C14···H6 ^{viii} C15···H5 C15···H13 H2···H7B H3···O H3···C3 ^{vii} H3···H3 ^{vii}	3.0100 2.7100 2.7400 2.6500 2.7100 2.4200 2.4800 2.9700 2.5700
Cl2…C9 ⁱ Cl2…Cl1 Cl2…Cl3 ⁱⁱ Cl3…Cl2 ⁱⁱⁱ Cl3…Cl2 ⁱⁱⁱ Cl3…C7 ^{iv} Cl1…H16 Cl3…H7A ^{iv} O…Cl3 ^v O…H3 O…H16	3.627 (3) 3.1344 (12) 3.5154 (11) 3.5154 (11) 3.592 (3) 2.6700 2.9900 3.372 (3) 2.4800 2.4700	C13H7 A^{xi} C13H15 C14H 6^{viii} C15H5 C15H13 H2H7B H3O H3C3 ^{vii} H3H3 ^{vii} H3C5 ^v	3.0100 2.7100 2.7400 2.6500 2.7100 2.4200 2.4200 2.4800 2.9700 2.5700 2.5700
$\begin{array}{c} C12 \cdots C9^{i} \\ C12 \cdots C11 \\ C12 \cdots C13^{ii} \\ C13 \cdots C12^{iii} \\ C13 \cdots C7^{iv} \\ C11 \cdots H16 \\ C13 \cdots H7A^{iv} \\ O \cdots C13^{v} \\ O \cdots H3 \\ O \cdots H16 \\ O \cdots H13^{v} \end{array}$	3.627 (3) 3.1344 (12) 3.5154 (11) 3.5154 (11) 3.592 (3) 2.6700 2.9900 3.372 (3) 2.4800 2.4700 2.4300	C13H7 A^{xi} C13H15 C14H 6^{viii} C15H5 C15H13 H2H7B H3O H3C3 ^{vii} H3H3 ^{vii} H3C5 ^v H3C6 ^v	3.0100 2.7100 2.7400 2.6500 2.7100 2.4200 2.4800 2.9700 2.5700 2.8600 2.9400
Cl2…C9 ⁱ Cl2…Cl1 Cl2…Cl3 ⁱⁱ Cl3…Cl2 ⁱⁱⁱ Cl3…Cl iv Cl1…H16 Cl3…H7A ^{iv} O…Cl3 ^v O…H3 O…H16 O…H13 ^v O…H15 ^v	3.627 (3) 3.1344 (12) 3.5154 (11) 3.5154 (11) 3.592 (3) 2.6700 2.9900 3.372 (3) 2.4800 2.4700 2.4300 2.7500	C13H7 A^{xi} C13H15 C14H 6^{viii} C15H5 C15H13 H2H7B H3O H3C 3^{vii} H3H 3^{vii} H3C 5^{v} H3C 6^{v} H5C15	3.0100 2.7100 2.7400 2.6500 2.7100 2.4200 2.4200 2.4800 2.9700 2.5700 2.8600 2.9400 2.6500
Cl2…C9 ⁱ Cl2…Cl1 Cl2…Cl3 ⁱⁱ Cl3…Cl2 ⁱⁱⁱ Cl3…Cl2 ⁱⁱⁱ Cl3…C7 ^{iv} Cl1…H16 Cl3…H7A ^{iv} O…Cl3 ^v O…H3 O…H3 O…H16 O…H15 ^v Cl…Cl4 ^{vi}	3.627 (3) 3.1344 (12) 3.5154 (11) 3.5154 (11) 3.592 (3) 2.6700 2.9900 3.372 (3) 2.4800 2.4700 2.4300 2.7500 3.402 (4)	C13H7 A^{xi} C13H15 C14H 6^{viii} C15H5 C15H3 H2H7B H3O H3C3 ^{vii} H3H3 ^{vii} H3C5 ^v H3C5 ^v H3C6 ^v H5C15 H5H15	3.0100 2.7100 2.7400 2.6500 2.7100 2.4200 2.4200 2.4800 2.9700 2.5700 2.5700 2.8600 2.9400 2.9400 2.6500 2.0800
Cl2…C9 ⁱ Cl2…Cl1 Cl2…Cl3 ⁱⁱ Cl3…Cl2 ⁱⁱⁱ Cl3…Cl iv Cl1…H16 Cl3…H7A ^{iv} O…Cl3 ^v O…H3 O…H16 O…H13 ^v O…H15 ^v Cl1…Cl4 ^{vi} Cl…Cl4 ^{vi} ClCl vii	3.627 (3) 3.1344 (12) 3.5154 (11) 3.5154 (11) 3.592 (3) 2.6700 2.9900 3.372 (3) 2.4800 2.4700 2.4300 2.7500 3.402 (4) 3.589 (4)	C13H7 A^{xi} C13H15 C14H 6^{viii} C15H5 C15H3 H2H7B H3O H3C 3^{vii} H3H 3^{vii} H3C 5^{v} H3C 5^{v} H3C 15 H5C15 H5H15 H6H7C	3.0100 2.7100 2.7400 2.6500 2.7100 2.4200 2.4200 2.4800 2.9700 2.5700 2.8600 2.9400 2.6500 2.0800 2.4900

C4···C5 ^{vi}	3.583 (4)	H6…C14 ^{xi}	2.7400
C4…C4 ^{vi}	3.576 (3)	H7A…C13 ^{viii}	3.0100
C5····C4 ^{vi}	3.583 (4)	H7A…Cl3 ^{iv}	2.9900
C5···C3 ^{vi}	3.402 (4)	H7B…H2	2.4200
C6…C14 ^{vi}	3.578 (4)	H7C…H6	2.4900
C7···Cl3 ^{iv}	3.592 (3)	H13…C15	2.7100
C7C13 ^{viii}	3 548 (4)	H13…H15	2,2200
$C_{1}^{0} = C_{1}^{0}$	3 627 (3)		2 4300
	3.027(3)	H15-0	2.1500
	3.572(3)		2.0000
VI3	3.548 (4)		2.7100
C14···C6 ^{v1}	3.578 (4)	H15····H5	2.0800
$C14\cdots C1^{v_1}$	3.402 (4)	H15…H13	2.2200
C3···H3 ^{vii}	2.9700	H15····O ^x	2.7500
C4…H6 ^{viii}	2.8600	H16…Cl1	2.6700
C5…H15	2.6600	H16…O	2.4700
$C5 \cdots H3^{x}$	2.8600		
C2—C1—C6	118.0 (2)	C4—C14—C15	118.8 (2)
C2—C1—C7	121.3 (3)	C14—C15—C16	121.2 (3)
C6—C1—C7	120.7 (3)	C8—C16—C15	125.9 (3)
C1—C2—C3	120.1 (3)	С1—С2—Н2	120.00
C2—C3—C4	121.8 (3)	С3—С2—Н2	120.00
C3—C4—C5	117.9 (2)	С2—С3—Н3	119.00
C3—C4—C14	118.8 (2)	С4—С3—Н3	119.00
C5—C4—C14	123.3 (2)	С4—С5—Н5	120.00
C4—C5—C6	120.1 (3)	С6—С5—Н5	120.00
C1—C6—C5	122.1 (3)	С1—С6—Н6	119.00
C9—C8—C13	118.7 (3)	С5—С6—Н6	119.00
C9—C8—C16	121.3 (3)	С1—С7—Н7А	109.00
C13—C8—C16	120.0 (2)	С1—С7—Н7В	109.00
Cl1—C9—C8	120.4 (2)	С1—С7—Н7С	109.00
Cl1—C9—C10	120.0 (2)	H7A—C7—H7B	109.00
C8—C9—C10	119.6 (3)	Н7А—С7—Н7С	109.00
Cl2—C10—C9	120.4 (2)	H7B—C7—H7C	109.00
Cl2—C10—C11	117.9 (2)	C10—C11—H11	121.00
C9—C10—C11	121.8 (3)	C12—C11—H11	121.00
C10-C11-C12	117.2 (3)	C8—C13—H13	120.00
Cl3—C12—C11	118.3 (2)	C12—C13—H13	120.00
Cl3—C12—C13	118.9 (2)	C14—C15—H15	119.00
C11 - C12 - C13	122.8 (3)	C16—C15—H15	119.00
C8—C13—C12	119.9 (3)	C8—C16—H16	117.00
0	120.5 (2)	C15—C16—H16	117.00
0	120.8 (2)		
C6-C1-C2-C3	-0.7 (5)	C9—C8—C13—C12	16(4)
C7-C1-C2-C3	179 5 (3)	$C_{16} - C_{8} - C_{13} - C_{12}$	-177.6 (3)
$C_2 - C_1 - C_6 - C_5$	0 4 (5)	C9-C8-C16-C15	-1586(3)
	(0)		

supplementary materials

C7—C1—C6—C5	-179.8 (3)	C13—C8—C16—C15	20.6 (4)
C1—C2—C3—C4	0.7 (5)	Cl1—C9—C10—Cl2	-0.6 (4)
C2—C3—C4—C5	-0.4 (4)	Cl1—C9—C10—C11	179.3 (2)
C2—C3—C4—C14	179.5 (3)	C8—C9—C10—Cl2	-179.0 (2)
C3—C4—C5—C6	0.1 (4)	C8—C9—C10—C11	0.8 (5)
C14—C4—C5—C6	-179.8 (3)	Cl2—C10—C11—C12	179.8 (2)
C3—C4—C14—O	7.2 (4)	C9—C10—C11—C12	0.0 (5)
C3—C4—C14—C15	-172.1 (3)	C10-C11-C12-Cl3	-179.3 (2)
C5—C4—C14—O	-172.9 (3)	C10-C11-C12-C13	0.0 (5)
C5-C4-C14-C15	7.8 (4)	Cl3—Cl2—Cl3—C8	178.4 (2)
C4—C5—C6—C1	-0.1 (5)	C11—C12—C13—C8	-0.9 (5)
C13—C8—C9—Cl1	179.9 (2)	O-C14-C15-C16	7.5 (5)
C13—C8—C9—C10	-1.6 (4)	C4-C14-C15-C16	-173.2 (3)
C16—C8—C9—Cl1	-0.9 (4)	C14—C15—C16—C8	-178.6 (3)
C16—C8—C9—C10	177.6 (3)		

Symmetry codes: (i) *x*-1/2, *y*, -*z*+1/2; (ii) -*x*, *y*+1/2, -*z*+1/2; (iii) -*x*, *y*-1/2, -*z*+1/2; (iv) -*x*, -*y*, -*z*; (v) -*x*+1/2, *y*+1/2, *z*; (vi) -*x*, -*y*+1, -*z*; (vii) *x*+1/2, -*y*+1/2, -*z*; (ix) *x*+1/2, *y*, -*z*+1/2; (x) -*x*+1/2, *y*-1/2, *z*; (x) *x*-1/2, -*y*+1/2, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C13—H13····O ^x	0.95	2.43	3.372 (3)	169
Symmetry codes: (x) $-x+1/2$, $y-1/2$, z.				

Fig. 1

